
Peak Demand Automation Reducing energy consumption in schools

Energy Management System

Internet

Wireless Internet Gateway:

- Three years holidays pre-programmed
- Special events easy to add
- Smart-Meter ready!

Control costs from anywhere!

<u>As low as \$775 per room</u>

Saves you money You don't have to do anything!

- Passed by voters in November 2012
- Dedicates \$550 million per year to "green projects and jobs."
- The money will go to schools. K-12 and Community Colleges.
- Money will be spent starting in March 2014

Proposition 39 realities

- Money is available.
- Energy managers are inundated.
- CEC implementation is complex and can be accessed once per year.
- Implementation took a very long time: ballot measure approved 11/2012, first spending 4/2014 (1.5 years!)

Prop 39: The California Clean Energy Jobs Act

• CEC requirements:

- > Must provide data on job creation.
- > Must provide data on labor savings.

The CEC encourages schools to have an energy manager and energy plan.

- 270,000 classrooms in California.
- 80,000 are "re-locatable."
- Re-locatable = low cost and flexible.
- Bad air and poor energy efficiency.
- Average cost for Electricity : \$1400 for re-locatables, \$400 can be saved.
- Average HVAC cost of "site built:" \$1100, \$150 can be saved.

Cost savings:

- 1. <u>Suppression of strip heaters</u>
- 2. <u>Scheduling</u>
- 3. Air Quality (no more open doors)
- 4. Door Lock-out (no heat or AC if door is open)

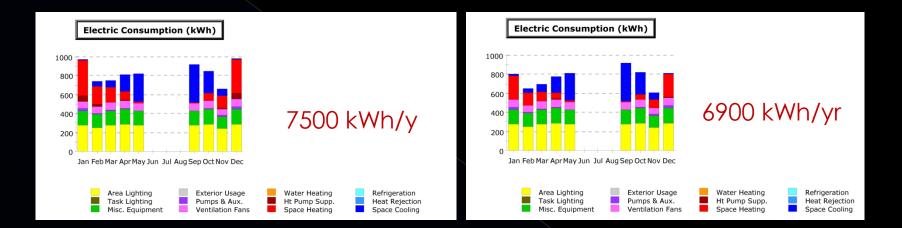
Scheduling offers the largest potential savings: forgetting to turn off nights, weekends and holidays.
Suppression of strip heaters is unique to the Peak Demand Automation Energy Management System and will reduce overall energy use over 9% by itself!

(used in the past)

- On't hook up the wire
- Time delay
- Internal temperature difference

Dynamic Suppression of strip heaters is unique to the Peak Demand Automation Energy Management System

Portable (re-locatable) classrooms


	First stage	Second Stage	Combined
Heat delivered	10000	10000	20000
Watts used	3333	10000	13333
Effective COP	3	1	1.5

Only use the strip if needed!

Sense outdoor temperature.
Only activate strip for very low temperatures.
Effectively limits the strip to less than ten days per year.

Computer models for strip suppression: Sacramento

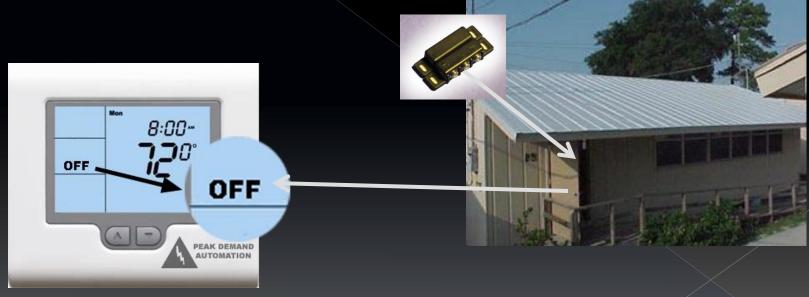
- With strip 7500 kwh/yr = \$1350
- No strip 6900 kWh/yr = \$1242 (-\$110 or 9%)
- Additional savings due to automation (~15%)

CEC Calculator

(California Energy Commission)

- Reduce savings to lowest possible for this technology
- Satisfies CEC ECMS 11, 12, 13B and 16

By Campus	Gas Packs	Bards	Gas Pack savings	BARD savings	Cost, Installed	Utility Rebate	Simple payback, Years	SIR
All Bard Campus	0	10	\$0.00	\$1,484.16	\$9,000.00	\$0.00	6.1	2.17
All Gaspack Campus	10	0	\$832.84	\$0.00	\$9,000.00	\$0.00	10.8	1.20


Even with reduced savings estimates, SIR (savings to investment ratio) Is 2.17 for portables and 1.20 for site built classrooms

Door Interlocks

Use simple low cost door sensor as AC interlock.

 Turns off thermostat whenever door is open

CO2 Sensing (Optional at extra cost)

 Excess CO2 is present due to exhalation
 California standard is 1000 ppm
 Turn on fans whenever standard is exceeded.

Gas Sensing (Optional at extra cost)

Windex
Cleaning Fluid
Carpet Glue
Paint
Low Cost Furniture

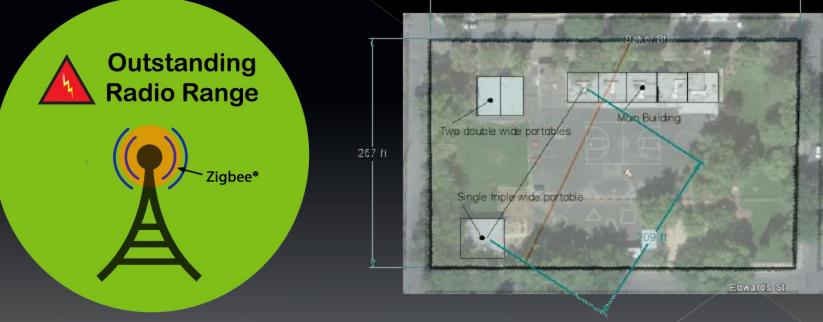
Turn on the fan whenever bad fumes are present

Radio topologies

- Wi-fi : ubiquitous high bandwidth but uses a commercially vulnerable TCP/IP connection!
- Zig-bee: Mesh standard
- ISM: Lower frequency allocated by FCC for instrumentation.

Radio Type	Power, milliWatts	Indoor range, ft	
Zig-Bee	63	261 ft.	
Wi_Fi	1000	793 ft.	
ISM (900 MHz)	250	1000 ft.	

The propagation loss is proportional to the square of the frequency: therefore there is seven (7) times more propagation loss at 2.4 GHz than at 900 MHz.


Effective radio range

- Wi-Fi : High bandwidth 2.4 GHz (uses vulnerable TCP packets)
- Zig-bee : Low bandwidth 2.4 GHz
- ISM: Low bandwidth 900 MHz

Wi-Fi and Zig-bee are on the same frequency

Strongest wins

4

ISM = longest range

Actual campus map with outlying building

Wi-fi for schools?

Do you want dozens of students with laptops, tablets and smartphones sharing a network with your thermostats?

Wi-Fi and Zig-bee are on the same frequency: there are well known interference issues!

Conclusion: Wi-Fi control is ok for the home, but wrong for schools.

Energy Management vs. programmable thermostat

- Central data and logging.
- Network connectivity to cloud or other analytics.
- Control based on other building elements.
- Can manage more than one energy consumer.
- User interface for multiple rooms/campuses.
- Secure system without reused passwords.

Energy Management vs. programmable thermostat part 2

- Add air quality monitoring.
- Selective power (energy monitoring).
- Are computers included? (These are big power wasters).
- Can you add motion detection?
- Integrated lighting controls.

If you cannot add these things you are NOT buying an "Energy Management System," just a bunch of programmable thermostats!

<u>Conclusions</u>

- Energy management systems for schools:
 - > Save up to \$337 per portable classroom.
 - > Provide better air quality.
 - > Reduce maintenance and enhance remote debug.
 - Provide a means for power, occupancy and lighting controls.
- Principal savings techniques:
 - > Automation

4

 Heat strip suppression <u>only</u> on Peak Demand Energy Management Systems

Wireless makes these systems cost effective and portable.

A travelling demo unit will come to your office: Just call 800-503-1123

or email: sales@peakdemandautomation.com